Inexact knowledge 2.0

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact Knowledge with Introspection

Standard Kripke models are inadequate to model situations of inexact knowledge with introspection, since positive and negative introspection force the relation of epistemic indiscernibility to be transitive and euclidean. Correlatively, Williamson’s margin for error semantics for inexact knowledge invalidates axioms 4 and 5. We present a new semantics for modal logic which is shown to be comple...

متن کامل

A non-standard Semantics for Inexact Knowledge with Introspection

Standard Kripke models are inadequate to model situations of inexact knowledge with introspection, since positive and negative introspection force the relation of epistemic indiscernibility to be transitive and euclidian. Correlatively, Williamson’s margin for error semantics for inexact knowledge invalidates axioms 4 and 5. We state a non-standard semantics for modal logic which is shown to be...

متن کامل

Generalization and Inexact Computation

We propose a family of directions that generalizes many directions proposed so far in interiorpoint methods for the SDP (semide nite programming) and for the monotone SDLCP (semide nite linear complementarity problem). We derive the family from the Helmberg-Rendl-Vanderbei-Wolkowicz/KojimaShindoh-Hara/Monteiro direction by relaxing its \centrality equation" into a \centrality inequality." Using...

متن کامل

Inexact Newton Dogleg Methods

The dogleg method is a classical trust-region technique for globalizing Newton’s method. While it is widely used in optimization, including large-scale optimization via truncatedNewton approaches, its implementation in general inexact Newton methods for systems of nonlinear equations can be problematic. In this paper, we first outline a very general dogleg method suitable for the general inexac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inquiry

سال: 2020

ISSN: 0020-174X,1502-3923

DOI: 10.1080/0020174x.2020.1754286